Date Tags Hardware

Cersat BigData & Cloud Platform : hardware evolution and statistics

#ignore

%matplotlib inline

import pandas as pd
data = pd.read_csv('/home/pifgold/tmp/servers_cersat.csv', na_values=['#DIV/0!'])
#ignore

from datetime import datetime
def to_date(d):
    try:
        return datetime.strptime(d, '%d-%m-%Y')
    except Exception, e:
        #print e
        return None

dates = [ to_date(d) for d in data['date'] ]
data.index = dates
#data
#print data.index.min(), "->", data.index.max()
#ignore

data = data["2010-01-01":]   # removes invalid data
#print data
#data.columns
dataset = data[["nb cores.1","ram.1","net link.1","nb disks.1","TB total.1"]]
dataset.columns = ['cores', 'memory', 'network links', 'disks', 'TB']

dataset = dataset.resample('6M', how='sum')

Capacity added per semester

_ = dataset.plot(subplots=True, kind='bar', figsize=(16,12))

Platform capacity over time

_ = dataset.cumsum().plot(subplots=True, kind='bar', figsize=(16,16))

Ratios (mem/core, TB/core etc...)

dataset_stats = pd.DataFrame()
dataset_stats['mem/core (gb)'] = dataset['memory']/dataset['cores']
dataset_stats['TB / core'] = dataset['TB']/dataset['cores']
dataset_stats['TB / network links'] = dataset['TB']/dataset['network links']

_ = dataset_stats.plot(subplots=True, kind='bar', figsize=(16,12))

Price evolution per TB (in €, all server components included [cpu,mem,system disks...])

#ignore

def to_float(s):
    #print type(s),s
    res = None
    try:
        s = ''.join([ c for c in s if c.isdigit() or c == ',' ])
        s = s.replace(',', '.')
        res = float(s)
    except Exception, e:
        #print e
        pass
    #print res
    return res
#print data[u'Prix / TB\n(tout compris)']
price_per_tb = [ to_float(s) for s in data[u'Prix / TB\n(tout compris)'] ]
data['euros / TB'] = price_per_tb
price_per_tb_per6M = data['euros / TB'].resample('6M', how='mean')
#print price_per_tb_per6M
price_per_tb_per6M.plot(kind='bar', figsize=(16,5))
Out[453]:
<matplotlib.axes.AxesSubplot at 0x10227c10>

Comments

comments powered by Disqus